Respuesta :

Answer:

x² + 2x + 3

Step-by-step explanation:

given [tex]\frac{x^3+3x^2+5x+3}{x+1}[/tex]

One way of dividing is to use the divisor as a factor in the numerator

Consider the numerator

x²(x + 1) - x² + 3x² + 5x + 3

= x²(x + 1) + 2x(x + 1) - 2x + 5x + 3

= x²(x + 1) + 2x(x + 1) + 3(x + 1) - 3 + 3

= x²(x + 1) + 2x(x + 1) + 3(x + 1) + 0

[tex]\frac{x^3+3x^2+5x+3}{x+1}[/tex]

= [tex]\frac{(x+1)(x^2+2x+3)}{x+1}[/tex] = x² + 2x + 3 ← quotient