70 points!!!!Please HELP
__ __
Prove AZ = BX using a flow chart proof.

---------------------------------------------- ----------------------------
| ∠X ≅ ∠Z (Given) | | |
| Line XY ≅ Line ZY (Given) | ----------------> | ΔXBY ≅ ΔZAY |
| ∠Y is a common angle | | (ASA) |
---------------------------------------------- ----------------------------
|
|
|
|
|
∨
------------------------------------
| |
| Line AZ ≅ Line BX |
| (CPCTC) |
-------------------------------------
If two angles and the enclosed side of one triangle exist congruent to two angles and the enclosed side of another triangle, then both the triangles exist congruent.
According to ASA (Angle Side Angle) postulate:
If two angles and the enclosed side of one triangle exist congruent to two angles and the enclosed side of another triangle, then both the triangles exist congruent.
Consider triangle XBY and ZAY
[tex]${data-answer}amp;\angle \mathrm{X} \cong \angle \mathrm{Z} \\[/tex]
[tex]${data-answer}amp;\overline{\mathrm{XY}} \cong \overline{\mathrm{ZY}}[/tex]
[tex]$\angle \mathrm{Y}$[/tex] exists common
According to the ASA postulate triangle, XBY and ZAY exist congruent. And congruent triangles contain congruent corresponding sides, therefore [tex]$\overline{\mathrm{AZ}} \cong \overline{\mathrm{BX}}$[/tex]
Therefore, AZ = BX.
To learn more about the ASA postulate triangle, refer:
https://brainly.com/question/11356969
#SPJ2