Answer:
The correct option is c.
Step-by-step explanation:
The given equation is
[tex]15x+7y=15[/tex]
The given inequality is
[tex]15x+7y\geq 15[/tex]
A point will contained in solution set if the above inequality satisfied by that point.
Check the point (0,-3),
[tex]15(0)+7(-3)\geq 15[/tex]
[tex]-21\geq 15[/tex]
This statement is false, therefore option a is incorrect.
Check the point (-3,0),
[tex]15(-3)+7(0)\geq 15[/tex]
[tex]-45\geq 15[/tex]
This statement is false, therefore option b is incorrect.
Check the point (3,3),
[tex]15(3)+7(3)\geq 15[/tex]
[tex]66\geq 15[/tex]
This statement is true, therefore option c is correct.
Check the point (-3,-3),
[tex]15(-3)+7(-3)\geq 15[/tex]
[tex]-66\geq 15[/tex]
This statement is false, therefore option d is incorrect.