contestada

hich function has a range of {y|y ≤ 5}?

f(x) = (x – 4)2 + 5
f(x) = –(x – 4)2 + 5
f(x) = (x – 5)2 + 4
f(x) = –(x – 5)2 + 4

Respuesta :

Answer:

[tex]f(x)=-(x-4)^{2}+5[/tex]

Step-by-step explanation:

we know that

The equation of a vertical parabola into vertex form is equal to

[tex]y=a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex of the parabola

if a>0 -----> the parabola open upward (vertex is a minimum)

if a<0 -----> the parabola open downward (vertex is a maximum)

Verify each case

case A) [tex]f(x)=(x-4)^{2}+5[/tex]

The vertex is the point [tex](4,5)[/tex]

[tex]a=1[/tex]

a>0 -----> the parabola open upward (vertex is a minimum)

The range is the interval--------> [5,∞)

[tex]y\geq5[/tex]

case B) [tex]f(x)=-(x-4)^{2}+5[/tex]

The vertex is the point [tex](4,5)[/tex]

[tex]a=-1[/tex]

a<0 -----> the parabola open downward (vertex is a maximum)

The range is the interval--------> (-∞,5]

[tex]y\leq 5[/tex]

case C) [tex]f(x)=(x-5)^{2}+4[/tex]

The vertex is the point [tex](5,4)[/tex]

[tex]a=1[/tex]

a>0 -----> the parabola open upward (vertex is a minimum)

The range is the interval--------> [4,∞)

[tex]y\geq4[/tex]

case D) [tex]f(x)=-(x-5)^{2}+4[/tex]

The vertex is the point [tex](5,4)[/tex]

[tex]a=-1[/tex]

a<0 -----> the parabola open downward (vertex is a maximum)

The range is the interval--------> (-∞,4]

[tex]y\leq 4[/tex]