Respuesta :
Answer:
[tex](f + g)(x) = 3x ^ 2 + \frac{3}{2}x - 9[/tex]
Step-by-step explanation:
We are asked to find (f + g) (x)
In this case what we must do is add the function f (x) with the function g (x). So, we have:
[tex]f(x) = \frac{1}{2}x - 3\\g (x) = 3x ^ 2 + x - 6\\(f + g) (x) = f(x) + g (x)\\(f + g) (x) = \frac{1}{2}x - 3 + 3x ^ 2 + x - 6[/tex]
Finally we simplify, and we have left:
[tex](f + g)(x) = 3x ^ 2 + \frac{3}{2}x - 9[/tex]
Answer:
[tex](f + g) (x) =3x^{2} +\frac{3}{2}x-9[/tex]
Step-by-step explanation:
We are given the following two functions and we are to add them:
[tex] f (x) = \frac {x} {2} -3 [/tex]
[tex] g (x) = 3x^{2} + x - 6 [/tex]
Adding these two functions, we get:
[tex] (f + g) (x) = f (x) + g (x) [/tex]
[tex] (f + g) (x) = \frac {1} {2} x - 3 + 3x^{2} + x - 6 [/tex]
Adding the like terms together and simplifying them to get:
[tex] (f + g) (x) = 3x^{2} + \frac {3}{2} x - 9 [/tex]