which expression is equivalent to 7 sqrt x^2/5 sqrt y^3

Answer:
Option A [tex]x^{\frac{2}{7}}*y^{-\frac{3}{5}}[/tex]
Step-by-step explanation:
we have
[tex]\frac{\sqrt[7]{x^{2}}}{\sqrt[5]{y^{3}}}[/tex]
we know that
[tex]\sqrt[7]{x^{2}}=x^{\frac{2}{7}}[/tex]
[tex]\sqrt[5]{y^{3}}=y^{\frac{3}{5}}[/tex]
substitute in the expression
[tex]\frac{x^{\frac{2}{7}}}{y^{\frac{3}{5}}}=x^{\frac{2}{7}}*y^{-\frac{3}{5}}[/tex]
Answer:
The correct option is 1
Step-by-step explanation:
Given the expression
[tex]\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}[/tex]
we have to simplify the above
[tex]\sqrt[7]{x^2}=(x^2)^{\frac{1}{7}}=x^{\frac{2}{7}}[/tex]
[tex]\sqrt[5]{y^3}=(y^3)^{\frac{1}{5}}=y^{\frac{3}{5}}[/tex]
The expression becomes
[tex]\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\frac{x^{\frac{2}{7}}}{y^{\frac{3}{5}}}=[x^{\frac{2}{7}}][y^{\frac{-3}{5}}][/tex]
Hence, the correct option is 1