Respuesta :

Answer:

Option A [tex]x^{\frac{2}{7}}*y^{-\frac{3}{5}}[/tex]

Step-by-step explanation:

we have

[tex]\frac{\sqrt[7]{x^{2}}}{\sqrt[5]{y^{3}}}[/tex]

we know that

[tex]\sqrt[7]{x^{2}}=x^{\frac{2}{7}}[/tex]

[tex]\sqrt[5]{y^{3}}=y^{\frac{3}{5}}[/tex]

substitute in the expression

[tex]\frac{x^{\frac{2}{7}}}{y^{\frac{3}{5}}}=x^{\frac{2}{7}}*y^{-\frac{3}{5}}[/tex]

Answer:

The correct option is 1

Step-by-step explanation:

Given the expression

[tex]\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}[/tex]

we have to simplify the above

[tex]\sqrt[7]{x^2}=(x^2)^{\frac{1}{7}}=x^{\frac{2}{7}}[/tex]

[tex]\sqrt[5]{y^3}=(y^3)^{\frac{1}{5}}=y^{\frac{3}{5}}[/tex]

The expression becomes

[tex]\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\frac{x^{\frac{2}{7}}}{y^{\frac{3}{5}}}=[x^{\frac{2}{7}}][y^{\frac{-3}{5}}][/tex]

Hence, the correct option is 1