Respuesta :

Answer:

x=4+5i and x=4-5i

Step-by-step explanation:

[tex]x^2-8x + 41 = 0[/tex]

we apply quadratic formula to solve for x

[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

a= 1, b= -8 and c= 41

Plug in all the values in the formula

[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-(-8)+-\sqrt{(-8)^2-4(1)(41)}}{2(1)}[/tex]

[tex]x=\frac{8+-\sqrt{64-164}}{2}[/tex]

[tex]x=\frac{8+-\sqrt{-100}}{2}[/tex]

square root (-1) is 'i'

[tex]x=\frac{8+-10i}{2}[/tex]

Divide both terms by 2

x= 4+-5i

two values of x  are 4+5i and 4-5i