Respuesta :

qabtt

[tex]7u - \dfrac{8}{4} = 7u - \dfrac{6}{8} + 4[/tex]

  • Set up

[tex]- \dfrac{8}{4} \neq \dfrac{28}{4}[/tex]

  • Subtract [tex]7u[/tex] from both sides of the equation

You will find that we have two constants on the sides of the equal sign which don't equal each other. Thus, no solution exists for [tex]u[/tex].

Answer:

[tex]u= 1\frac{4}{7}[/tex]

Step-by-step explanation:

We are given an expression [tex]\frac{7u-8}{4} =\frac{7u-6}{8+4}[/tex].

To solve this, we can use a simple method called cross multiplication where  numerator of one fraction is multiplied with the denominator of the other fraction.

[tex]\frac{7u-8}{4} =\frac{7u-6}{8+4}[/tex]

[tex](7u-8)(8+4)=4(7u-6)\\\\56u+28-64-32=28u-24\\\\56u-28u=-24-28+64+32\\\\28u=44\\\\u=\frac{11}{7}[/tex]

Solving the given expression for u we get [tex]\frac{11}{7}[/tex] which is an improper fraction so we will change it to mixed number to get:

[tex]\frac{11}{7} =1\frac{4}{7}[/tex]

Therefore, u is equal to [tex]1\frac{4}{7}[/tex].