Respuesta :

For this case we have, by definition:


[tex]a^{-b} =\frac{1}{a ^ b}[/tex]

So, we have:


[tex]\frac{1}{4}^{-\frac{1}{2}}=\frac{1}{(\frac{1}{4})^{\frac{1}{2}}}[/tex]

On the other hand we have that by definition:


[tex]a^{\frac{1}{2}}=\sqrt{a}[/tex]

Thus, the expression can be written as:


[tex]\frac{1}{\sqrt {\frac{1}{4}}} =[/tex]

[tex]\frac{1}{\frac{1}{\sqrt{4}}}[/tex]

[tex]\frac{1}{\frac{1}{2}}[/tex]

[tex]\frac{1*2}{1*1}=2[/tex]

So, we have:


[tex]\frac{1}{4}^{-\frac{1}{2}}= 2[/tex]

Answer:


[tex]\frac{1}{4}^{-\frac{1}{2}}= 2[/tex]