Respuesta :

Given equation : [tex]5x^2−34x=−24[/tex]

Adding 24 on both sides, we get

[tex]5x^2-34x+24=-24+24[/tex]

[tex]5x^2-34x+24=0[/tex]

Let us factor this.

5*24 = 120.

b=-34.

So, we need to find the factors of 120 that add upto -34.

-30 and -4 are the factors add upto -34 and product 120.

[tex]\mathrm{Break\:the\:expression\:into\:groups}[/tex]

[tex]=\left(5x^2-4x\right)+\left(-30x+24\right)[/tex]

[tex]\mathrm{Factor\:out\:}x\mathrm{\:from\:}5x^2-4x\mathrm{:\quad }x\left(5x-4\right)[/tex]

[tex]\mathrm{Factor\:out\:}-6\mathrm{\:from\:}-30x+24\mathrm{:\quad }-6\left(5x-4\right)[/tex]

[tex]=x\left(5x-4\right)-6\left(5x-4\right)[/tex]

[tex]\left(x-6\right)\left(5x-4\right)=0[/tex]

Setting each factor equal to 0 and solve for x.

x-6 =0

x=6.

5x-4 =0.

5x = 4.

x=4/5.

Therefore, final answer is x=6, 4/5.