Respuesta :

Answer:

x = 2

Step-by-step explanation:

For secants that intersect at an external point, the product of the external length and total length is a constant.

... 3·(3 +5) = 4·(4 +x) . . . . . write the two products, and set them equal

... 24 = 16 +4x . . . . . . . . . . eliminate parentheses

... 8 = 4x . . . . . . . . . . . . . . .subtract 16

... 2 = x . . . . . . . . . . . . . . . . divide by 4

Limosa

Answer:

[tex]x=2[/tex]

Step-by-step explanation:

(Refer the attachment to find ABCD and O points)

When two secant lines AD and CB intersects at a point outside the circle "O"

then,

OA*OD=OB*OC

Now we can substitute the values and find x.

[tex]3*8=4*(4+x)[/tex]

[tex]24=16+4x[/tex]

[tex]8=4x[/tex]

[tex]x=2[/tex]



Ver imagen Limosa