Respuesta :

Answer:

The solution of the system is:  [tex]x=2, y=5[/tex]

Step-by-step explanation:

The given system of equations is.......

[tex]-x-3y=-17\\ \\ 2x-6y=-26[/tex]

So, the augmented matrix will be:   [tex]\left[\begin{array}{cccc}-1&-3&|&-17\\2&-6&|&-26\\\end{array}\right][/tex]

Now, we will transform the augmented matrix to the reduced row echelon form using row operations.

Row operation 1 :  Multiply the 1st row by -1. So..........

[tex]\left[\begin{array}{cccc}1&3&|&17\\2&-6&|&-26\\\end{array}\right][/tex]

Row operation 2:  Add -2 times the 1st row to the 2nd row. So.......

[tex]\left[\begin{array}{cccc}1&3&|&17\\0&-12&|&-60\\\end{array}\right][/tex]

Row operation 3:  Multiply the 2nd row by [tex]-\frac{1}{12}[/tex]. So.......

[tex]\left[\begin{array}{cccc}1&3&|&17\\0&1&|&5\\\end{array}\right][/tex]

Row operation 4:  Add -3 times the 2nd row to the 1st row. So........

[tex]\left[\begin{array}{cccc}1&0&|&2\\0&1&|&5\\\end{array}\right][/tex]

Now, from this reduced row echelon form of the augmented matrix, we can get that [tex]x=2[/tex] and [tex]y=5[/tex]

So, the solution of the system is:  [tex]x=2, y=5[/tex]