Respuesta :

We have been given that

[tex] f(x)=e^{9x}+e^{-x} [/tex]

On differentiating we get

[tex] f'(x)=9e^{9x}-e^{-x} [/tex]

For the function to be increasing, the first derivative must be positive

f'(x)>0

[tex] 9e^{9x}-e^{-x}>0 [/tex]

[tex] \left (9e^{-9x}-e^{-x} \right )>0

9e^{9x}-\frac{1}{e^x}>0

\frac{9e^{10x}-1}{e^x}>0

9e^{10x}-1>0

e^{10x} >\frac{1}{9}

[/tex]

[tex] x>\frac{1}{10}ln(9^{-1})



[/tex]

[tex] x>-\frac{1}{5}ln3
[/tex]

Thus, the required interval is given by

[tex] x\in \left ( -\frac{ln3}{5},\infty \right ) [/tex]

Otras preguntas