Respuesta :

frika
In an equilateral triangle the radius of inscribed circle is equal to
[tex]r= \frac{a \sqrt{3} }{6} [/tex], so 
[tex]5 \sqrt{3} = \frac{a \sqrt{3} }{6} [/tex] and 
[tex]a=30[/tex].
The area of this equilateral triangle is [tex]A= \frac{a^2 \sqrt{3} }{4} =\frac{30^2\cdot \sqrt{3} }{4}=225 \sqrt{3} [/tex] square units.


Answer:

[tex]\frac{225}{4}[/tex][tex]\sqrt{3}[/tex][tex]m^{2}[/tex]