Respuesta :
The minimum sample size required for a test with a confidence interval of [tex]100(1 - \alpha )%[/tex] with a z-score of [tex]z_{ \alpha /2}[/tex] and margin of error of E and a population proportion of p is given by:
[tex]n= \frac{p(1-p)z_{ \alpha /2}^2 \alpha }{E^2} [/tex]
Given p = 34% = 0.34, E = 0.027, [tex]z_{ \alpha /2}=1.645[/tex]
Therefore,
[tex]n= \frac{0.34(1-0.34)(1.645)^2}{0.027^2} \\ \\ = \frac{0.34(0.66)(2.706025)}{0.000729} = \frac{0.60723201}{0.000729} \\ \\ =832.97=833[/tex]
[tex]n= \frac{p(1-p)z_{ \alpha /2}^2 \alpha }{E^2} [/tex]
Given p = 34% = 0.34, E = 0.027, [tex]z_{ \alpha /2}=1.645[/tex]
Therefore,
[tex]n= \frac{0.34(1-0.34)(1.645)^2}{0.027^2} \\ \\ = \frac{0.34(0.66)(2.706025)}{0.000729} = \frac{0.60723201}{0.000729} \\ \\ =832.97=833[/tex]
Answer: 833
Step-by-step explanation:
When the prior population proportion (p) is known , then the formula to find the minimum sample size is given by :-
[tex]n=p(1-p)(\dfrac{z_{c}}{E})^2[/tex]
where, [tex]z_{c}[/tex] is the z-score for confidence level (c) and E = the margin of error .
Given : A prior study estimated as 34%.
i.e. p= 0.34
Confidence level = 0.90
Critical z-score for 90% confidence level : [tex]z_{c}1.645[/tex]
Margin of error : E= 0.027
then , the sample size = [tex]n=0.34(1-0.34)(\dfrac{1.645}{0.027})^2[/tex]
Simplify ,
[tex]n=832.9657\approx833[/tex]
Hence, the minimum sample size=833