QueenKD
contestada

In order to accumulate enough money for a down payment on a house, a couple deposits $300/month into an account paying 6% compounded monthly. If payments are made at the end of each period, how much money will be in the account in 5 years? What formula is required to complete this problem?

Respuesta :

[tex]\bf ~~~~~~~~~~~~\textit{Future Value of an ordinary annuity}\\ ~~~~~~~~~~~~(\textit{payments at the end of the period}) \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right][/tex]

[tex]\bf \begin{cases} A= \begin{array}{llll} \textit{accumulated amount}\\ \end{array}\\ pymnt=\textit{periodic payments}\to &300\\ r=rate\to 6\%\to \frac{6}{100}\to &0.06\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, thus twelve} \end{array}\to &12\\ t=years\to &5 \end{cases}[/tex]

[tex]\bf A=300\left[ \cfrac{\left( 1+\frac{0.06}{12} \right)^{12\cdot 5}-1}{\frac{0.06}{12}} \right]\implies A=300\left[ \cfrac{(1.005)^{60}-1}{0.005} \right] \\\\\\ A=300(\stackrel{\approx}{69.770030509863214)}\implies A\approx 20931.009152958964[/tex]