Respuesta :

First find the derivative of f(x):-

f'(x)  =  3x^2 - 12x + 8  

So instantaneous rate at x = 3 

=  3(3)^2 - 12(3) + 8 

=  27 - 36 + 8  =   -1  answer

The instantaneous rate of change is how much a function changes, at that a particular point

The instantaneous rate of change of f(x) at x =3 is [tex]-\frac{5}{3}[/tex]

The function is given as:

[tex]f(x) =x^3 - 6x^2 + 8x - 2[/tex]

And the point is given as:

[tex]x = 3[/tex]

The instantaneous rate of change (r) is calculated as:

[tex]r = \frac{f(x)}{x}[/tex]

So, we have:

[tex]r=\frac{x^3 - 6x^2 + 8x - 2}{x}[/tex]

Substitute 3 for x

[tex]r=\frac{3^3 - 6 \times 3^2 + 8\times 3 - 2}{3}[/tex]

[tex]r=\frac{-5}{3}[/tex]

Rewrite as:

[tex]r= -\frac{5}{3}[/tex]

Hence, the instantaneous rate of change of f(x) at x =3 is [tex]-\frac{5}{3}[/tex]

Read more about instantaneous rate of change at:

https://brainly.com/question/24042545