In the figure FAC=GBC. find DBC

Answer:
[tex]m{\angle}DBC=152^{\circ}[/tex]
Step-by-step explanation:
Given: From the figure, it is given that [tex]m{\angle}FAC=m{\angle}GBC=28^{\circ}[/tex].
To find: The value of [tex]m{\angle}DBC[/tex]
Solution: From the figure, it is given that [tex]m{\angle}FAC=m{\angle}GBC=28^{\circ}[/tex].
Now, using the straight line property, we have
[tex]m{\angle}DBC+m{\angle}GBC=180^{\circ}[/tex]
Substituting the given values, we get
[tex]m{\angle}DBC+28^{\circ}=180^{\circ}[/tex][tex]m{\angle}DBC=180^{\circ}-28^{\circ}[/tex]
[tex]m{\angle}DBC=152^{\circ}[/tex]
Hence, the measure of [tex]m{\angle}DBC[/tex] is [tex]152^{\circ}[/tex].