Respuesta :
The perimeter is 11.12.
We use the distance formula to find the length of each segment that makes up the quadrilateral:
For RS:
[tex]d=\sqrt{(7-3)^2+(-2--1)^2}=\sqrt{4^2+(-2+1)^2}=\sqrt{16+(-1)^2} \\ \\=\sqrt{16+1}=\sqrt{17}=4.12[/tex]
For ST:
[tex]d=\sqrt{(7-5)^2+(2-2)^2}=\sqrt{2^2+0^2}=\sqrt{4+0}=\sqrt{4}=2[/tex]
For TU:
[tex]d=\sqrt{(5-5)^2+(-1-2)^2}=\sqrt{0^2+(-3)^2}=\sqrt{0+9}=\sqrt{9}=3[/tex]
For UR:
[tex]d=\sqrt{(5-3)^2+(-1--1)^2}=\sqrt{2^2+0^2}=\sqrt{4+0}=\sqrt{4}=2[/tex]
This gives us a perimeter of 2+3+2+4.12 = 11.12
We use the distance formula to find the length of each segment that makes up the quadrilateral:
For RS:
[tex]d=\sqrt{(7-3)^2+(-2--1)^2}=\sqrt{4^2+(-2+1)^2}=\sqrt{16+(-1)^2} \\ \\=\sqrt{16+1}=\sqrt{17}=4.12[/tex]
For ST:
[tex]d=\sqrt{(7-5)^2+(2-2)^2}=\sqrt{2^2+0^2}=\sqrt{4+0}=\sqrt{4}=2[/tex]
For TU:
[tex]d=\sqrt{(5-5)^2+(-1-2)^2}=\sqrt{0^2+(-3)^2}=\sqrt{0+9}=\sqrt{9}=3[/tex]
For UR:
[tex]d=\sqrt{(5-3)^2+(-1--1)^2}=\sqrt{2^2+0^2}=\sqrt{4+0}=\sqrt{4}=2[/tex]
This gives us a perimeter of 2+3+2+4.12 = 11.12
Answer:
13.6 is the correct answer
Step-by-step explanation:
got it right on the test