Consider the table below
\begin{tabular}{|lll|l|}
\hline\( P \) & \( Q \) & \( R \) & \( S \) \\
\hline 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 0 & 0 \\
\hline 1 & 0 & 1 & 1 \\
\hline 1 & 0 & 0 & 0 \\
\hline 0 & 1 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

Select the Boolean expression having the given table as its input/output table.
A. \( (P \vee Q \vee R) \wedge(P \vee \sim Q \vee R) \wedge(\sim P \vee \sim Q \vee \sim R) \)
B. \( (\sim P \wedge \sim Q \wedge \sim R) \vee(\sim P \wedge Q \wedge \sim R) \vee(P \wedge Q \wedge R) \)
C. \( (P \wedge Q \wedge R) \vee(P \wedge \sim Q \wedge R) \vee(\sim P \wedge \sim Q \wedge \sim R) \)
D. \( (\sim P \vee \sim Q \vee \sim R) \wedge(\sim P \vee Q \vee \sim R) \wedge(P \vee Q \vee R) \)